Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Chu-Yi Yu ${ }^{\mathrm{a} *}$ and Ying Fu ${ }^{\mathrm{a}, \mathrm{b}}$

${ }^{\text {a }}$ Beijing National Laboratory for Molecular Science, Laboratory for Chemical Biology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, People's Republic of China, and ${ }^{\text {b }}$ Graduate University of the Chinese Academy of Sciences, Beijing 100049, People's Republic of China

Correspondence e-mail: yucy@iccas.ac.cn

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$
R factor $=0.066$
$w R$ factor $=0.191$
Data-to-parameter ratio $=7.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
1,4-Dideoxy-2,3-O-isopropylidene- N -[3-(3-nitro-benzoylamino)benzoyl]-1,4-imino-d-talitol

The title compound, $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{8}$, has two molecules in the asymmetric unit. Molecules are linked into chains by $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions are observed between chains.

Comment

The title compound, $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{8}$, (I) (Fig. 1), is a derivative of 1,4-dideoxy-2,3-O-isopropylidene-1,4-imino-d-talitol (Fleet et al., 1988). The 3 -aminobenzoic acid group can be considered as a β-amino acid with a rigid conformation (Pohl et al., 2001). Thus, the crystal structure of (I) provides information for conformational analysis of this new type of β-peptide mimetic.

(I)

Two molecules of (I) exist in the asymmetric unit (Fig. 1). Apart from the dimethyldioxolanyl groups, C5/C6/C7/O3/O4/ $\mathrm{C} 11 / \mathrm{C} 12$ and $\mathrm{C} 31 / \mathrm{C} 32 / \mathrm{C} 33 / \mathrm{O} 13 / \mathrm{O} 21 / \mathrm{C} 37 / \mathrm{C} 38$, the molecules are related by pseudo-inversion symmetry. $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are formed between the peptide linkages (Table 1), generating $C_{2}^{2}(14)$ chains (Bernstein et al., 1995) propagating along the a direction. Numerous $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions are observed between chains (Table 1).

Experimental

The title compound, (I), was prepared from 1,4-dideoxy-2,3-O-isopropylidene-1,4-imino-D-talitol in three steps, as follows. In the first step, 1,4-dideoxy-2,3- O-isopropylidene-1,4-imino-d-talitol (4.5 g , 18.5 mmol) was dissolved in a mixture of pyridine (10 ml) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 ml). A solution of 3-nitrobenzoyl chloride ($3.7 \mathrm{~g}, 20 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ was added slowly to the reaction mixture at $273-$ 278 K (ice bath). After stirring for 2 h , the solvents were removed under reduced pressure and the residue was then dissolved in ethyl acetate (20 ml). The solution was washed with a saturated aqueous solution of $\mathrm{NaHCO}_{3}(20 \mathrm{ml})$. The organic layer was separated and the aqueous layer was extracted with ethyl acetate $(2 \times 20 \mathrm{ml})$. The combined organic layers were dried over MgSO_{4}, then concentrated in vacuo. The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate, 60:40) to give N-(3-nitro-benzoyl)-1,4-dideoxy-2,3:5,6-di- O-isopropylidene-1,4-imino-d-talitol as a colourless gum (6.8 g , yield 94%).

Received 12 June 2006
Accepted 23 June 2006

In the second step, a solution of N-(3-nitrobenzoyl)-1,4-dideoxy-2,3:5,6-di- O-isopropylidene-1,4-imino-d-talitol ($1.36 \mathrm{~g}, 3.5 \mathrm{mmol}$) in ethanol (20 ml) was stirred under an H_{2} atmosphere in the presence of $10 \% \mathrm{Pd}$ on charcoal $(150 \mathrm{mg})$ at room temperature for 5 h . The reaction mixture was then filtered through celites to remove the catalysts. The filtrate was concentrated under reduced pressure to give the crude aniline, which was directly dissolved in a solution of pyridine $(3.5 \mathrm{ml})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ and cooled with an ice-water bath.

In the third step, a solution of 3-nitrobenzoyl chloride (1.0 g , $5.4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ was added dropwise under an Ar atmosphere. After stirring for 2 h , the solvents were removed under vacuum and the residue was dissolved in ethyl acetate (20 ml). The resulting solution was washed with a saturated aqueous solution of $\mathrm{NaHCO}_{3}(20 \mathrm{ml})$. The organic layer was separated and the aqueous layer was extracted with ethyl acetate $(2 \times 20 \mathrm{ml})$. The organic layers were combined, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure to give the crude product, which was purified by column chromatography on silica gel (petroleum ether/ethyl acetate, 1:1) to give the title compound (1.5 g , yield 85%). Suitable single crystals were obtained by slow evaporation of a solution in ethyl acetate (m.p. 456-457 K).

Crystal data

$\mathrm{C}_{26} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{8}$
 $M_{r}=511.52$
 Monoclinic, $P 2_{1}$
 $a=12.5459$ (13) £
 $b=14.5417$ (14) \AA
 $c=14.6939$ (15) \AA
 $\beta=101.563$ (4) ${ }^{\circ}$
 $V=2626.3(5) \AA^{3}$
 Data collection

Rigaku Saturn CCD area-detector diffractometer
ω scans
Absorption correction: multi-scan Jacobson (1998)
$T_{\text {min }}=0.977, T_{\text {max }}=0.987$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.066$
$w R\left(F^{2}\right)=0.191$
$S=1.03$
5372 reflections
685 parameters
H atoms treated by a mixture of independent and constrained refinement

$Z=4$

$D_{x}=1.294 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=294$ (2) K
Block, colourless $0.24 \times 0.20 \times 0.14 \mathrm{~mm}$

21856 measured reflections 5372 independent reflections 3777 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.043$ $\theta_{\text {max }}=26.0^{\circ}$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.1155 P)^{2}\right] \\
& \quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.41 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.19 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \quad \text { (Sheldrick, 1997) } \\
& \text { Extinction coefficient: } 0.019 \text { (3) }
\end{aligned}
$$

Table 1
Hydrogen-bond geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 14^{\mathrm{i}}$	0.87 (6)	2.13 (6)	2.981 (6)	165 (5)
$\mathrm{N} 5-\mathrm{H} 5 A \cdots \mathrm{O}{ }^{\text {ii }}$	1.10 (6)	1.90 (6)	2.982 (6)	166 (5)
$\mathrm{C} 24-\mathrm{H} 24 \cdots \mathrm{O} 3^{\text {iii }}$	0.93	2.59	3.489 (7)	162
$\mathrm{C} 25-\mathrm{H} 25 \cdots \mathrm{O} 8^{\text {iv }}$	0.93	2.52	3.418 (7)	163
$\mathrm{C} 51-\mathrm{H} 51 \cdots \mathrm{O}^{\mathrm{V}}$	0.93	2.56	3.473 (7)	166
C52-H52 . $\mathrm{O}^{\text {5ii }}$	0.93	2.56	3.370 (7)	146

[^1]

Figure 1
A view of the asymmetric unit of (I), showing displacement ellipsoids at the 30% probabilty level. H atoms bound to C atoms have been omitted.

H atoms were placed in calculated positions and refined using a riding model, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ for $\mathrm{Csp}^{2}, 0.98 \AA$ for $\mathrm{CH}, 0.97 \AA$ for CH_{2} and $0.96 \AA$ for $\mathrm{CH}_{3} . U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$, except for the methyl groups, for which $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$. The H atoms of the $\mathrm{N}-\mathrm{H}$ groups were located in difference Fourier maps and refined with isotropic displacement parameters. The displacement parameters of atoms C37 and C38 were restrained to approximate isotropic behaviour. In the absence of significant anomalous scattering effects, Friedel pairs were merged as equivalent data for the final cycles of refinement. The absolute configuration was assigned on the basis of the known configuration of the starting material.

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997) and DIRDIF99 (Beurskens et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: CrystalStructure (Rigaku/MSC, 2005); software used to prepare material for publication: CrystalStructure.

This work was supported by the National Natural Science Foundation of China (grant Nos. 20172057 and 20232020), the National Basic Research Programme of China (grant No. 2003CB114400) and the Chinese Academy of Sciences.

References

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Beurskens, P. T., Beurskens, G., de Gelder, R., García-Granda, S., Israel, R., Gould, R. O. \& Smits, J. M. M. (1999). The DIRDIF99 Program System. Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.
Fleet, G. W. J., Son, J. C., Green, D. St C., Cenci di Bello, I. \& Winchester, B. (1988). Tetrahedron, 44, 2649-2655.

Jacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.
Pohl, S., Goddard, R. \& Kubik, S. (2001). Tetrahedron Lett. 42, 7555-7558.
Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

[^1]: Symmetry codes: (i) $-x+1, y+\frac{1}{2},-z+1$; (ii) $-x, y-\frac{1}{2},-z+1$; (iii) $x+1, y, z+1$; (iv)
 $-x+2, y+\frac{1}{2},-z+2 ;(\mathrm{v})-x-1, y-\frac{1}{2},-z$.

